能量奇点洪荒70托卡马克装置放电,完成工程可行性验证

·以“洪荒70”建成运行为起点,能量奇点计划投入研发下一代强磁场高温超导托卡马克装置“洪荒170”,该装置以实现氘氚等效能量增益(Q)大于10为目标,计划2027年建成,2030年后建成可用于示范性聚变发电站的托卡马克装置。

高温超导托卡马克装置“洪荒70”。

6月18日,由米哈游和蔚来参投、位于上海临港的可控核聚变能源公司能量奇点能源科技(上海)有限公司(简称能量奇点)宣布,其自研建造的高温超导托卡马克装置“洪荒70”实现等离子体放电,“洪荒70”建成运行标志着完成高温超导托卡马克的工程可行性验证。

能量奇点介绍,“洪荒70”进行了基于局部螺旋磁通注入(电子枪)和离子回旋加热(ICRF)两种预电离方式的放电实验,并成功获得第一等离子体。“洪荒70”中心场强0.6特斯拉,等离子体大半径0.75米,其磁体系统由26个高温超导磁体构成。这是全球首台全高温超导磁约束聚变装置,也是全球4台在运行的全超导托卡马克之一。

核聚变反应是宇宙中的普遍现象,是恒星的能量来源。可控核聚变被认为是人类终极能源,也被称为“人造太阳”,具有无限、经济、可计划、清洁、安全等优点,是解决能源及环境问题的重要途径之一。人类对可控核聚变的研究主要分为磁约束核聚变和激光核聚变。

磁约束核聚变是用特殊形态的磁场把氘、氚等轻原子核和自由电子组成的、处于热核反应状态的超高温等离子体约束在有限的体积内,使它受控制地发生大量的原子核聚变反应,释放出能量,典型的实验装置如中科院合肥物质科学研究院的全超导托卡马克核聚变实验装置(EAST)。

托卡马克是完成科学可行性验证的磁约束聚变技术路线,其中高温超导托卡马克将成熟物理与工程创新相结合,有望大幅提升装置性价比,加速实现聚变能源商业化,已成为全球范围内吸引市场化资金最多的聚变能源研发方向。

“洪荒70”等离子体放电。

能量奇点“90后”CEO杨钊表示,虽然目前全球已建造过100多台托卡马克装置,但“洪荒70”所采用的高温超导托卡马克是这一领域的创新技术路线。高温超导对于磁约束聚变而言是一种新材料,用高温超导材料来建造托卡马克,控制和约束等离子体,还没有先例可循。

过去两年,团队探索高温超导磁体的绕制、绝缘、浸渍、组装等工艺,确保将高温超导带材加工成磁体后性能不衰减;制备电阻值在纳欧级别的高温超导磁体接头;自主研发控制高温超导托卡马克装置运行的中央控制系统等。得益于上海的核电产业集群和高温超导材料产业集群,从2022年3月启动设计以来,能量奇点在两年内完成“洪荒70”的设计和建造,装置国产化率超96%。

“以洪荒70建成运行为起点,并以洪荒70作为关键实验平台,我们将投入研发下一代强磁场高温超导托卡马克装置——洪荒170,该装置以实现氘氚等效能量增益(Q)大于10为目标。”杨钊表示。能量奇点目标于2027年完成“洪荒170”装置的建设。为支持“洪荒170”的研发,能量奇点目前正在研发高温超导D形磁体,内部代号为经天磁体,目标是达到25特斯拉的磁场强度,预计今年底完成制造和测试。能量奇点计划2030年后建成可用于示范性聚变发电站的托卡马克装置。

 

DeepMind用AI实现可控核聚变突破:等离子体形状模拟精度提高65%

DeepMind的实验已将等离子体形状的模拟精度提高65%。

·去年,DeepMind和瑞士等离子体中心合作利用AI成功控制托卡马克内部的核聚变等离子体。最近,DeepMind新研究表明已将等离子体形状的模拟精度提高65%,将学习新任务所需的训练时间减少3倍甚至更多。

DeepMind的实验已将等离子体形状的模拟精度提高65%。

从人工智能机器人AlphaGo大战围棋世界冠军韩国棋手李世石,到人工智能程序AlphaFold预测蛋白质折叠,再到去年用AI控制核聚变反应登上《自然》杂志,谷歌旗下人工智能公司DeepMind已将人工智能算法深入到足以改变世界的领域。

7月26日,DeepMind表示,去年和瑞士等离子体中心合作利用人工智能成功控制了托卡马克内部的核聚变等离子体。“自那时起,我们的实验已经将等离子体形状的模拟精度提高了65%。”相关研究7月21日提交在预印本网站ArXiv上,论文题为《面向托卡马克磁控制的实用强化学习》。

托卡马克是一种利用磁约束来实现受控核聚变的环形容器,中央是一个环形真空室,外面缠绕线圈。通电时,托卡马克内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。

反馈控制对托卡马克装置的运行至关重要,控制系统主动管理磁线圈以抑制细长等离子体的不稳定性,此外对等离子体电流、位置和形状的精确控制使热排和等离子体能量的管理成为可能。传统的等离子体的精确控制是通过连续闭合等离子体电流、形状和位置来实现的,但等离子体形状和位置等量不能直接测量,必须通过磁测量间接、实时估计。虽然这类系统已成功稳定了大范围的放电,但这种设计具有挑战性且耗时。

而强化学习近来成为构建实时控制系统的另一种范式,强化学习在包括等离子体磁控制领域在内的实时控制系统中显示出了良好的效果,但与传统的磁约束反馈控制方法相比,仍然存在明显缺陷。

在此次研究中,研究团队将重点放在策略准确性和整体训练速度上,解决了强化学习方法的主要缺点,包括对所需的等离子体特性实现更高的控制精度、减少稳态误差、减少学习新任务所需时间,提出了对智能体架构和训练过程的算法改进。模拟结果显示,等离子体形状精度提高了65%,大大减少了等离子体电流的长期偏置,将学习新任务所需的训练时间减少3倍甚至更多。

研究团队表示,虽然这些结果显著降低了强化学习控制器的局限性,但还有很大改进空间。未来不仅需要提高模拟性能,还需要在硬件上匹配实际等离子放电时的性能水平,目前模拟和硬件之间的精度差距几乎主导了模拟中任何剩余的改进。同样,有许多机会可以继续减少训练所需的时间。